Was the freak ‘medicane’ storm that devastated Libya a glimpse of North Africa’s future?

Spread the love

Mike Rogerson, Northumbria University, Newcastle; Belkasem Alkaryani, University of Tobruk, and Mahjoor Lone, Northumbria University, Newcastle

Storm Daniel landed on the Libyan coastal town of Toukrah in the early hours of September 10 and started moving east. Soon the wind was rising and heavy rain falling, forcing people to stay indoors. By afternoon the rain was clearly out of the ordinary.

Albaydah city on the coast would receive 80% of its annual rain before midnight, according to records from a local weather station that we have accessed. In less than 24 hours, thousands of people were dead, hundreds of thousands were missing, and towns and villages across Jebel Akhdar (the Green Mountain) in north-eastern Libya resembled a Hollywood disaster movie.

Storm Daniel was a Mediterranean cyclone or hurricane (a so-called medicane) which struck Greece, Bulgaria, Libya, Egypt and Turkey over the course of a week. Medicanes are not rare. Such large storms happen in this part of the world every few years. But Daniel has proved to be the deadliest.

At the time of writing, the World Health Organization estimates that at least 3,958 people have died across Libya as a result of the floods, with more than 9,000 people still missing.

Daniel was not an exceptionally big storm though. The medicane with the highest wind speeds was medicane Ianos in September 2020, which killed around four people and caused more than €224 million (£193 million) of damage. So what made Storm Daniel different?

Less frequent, but stronger

Like tropical cyclones, medicanes form in hot conditions at the end of summer. Most medicanes form to the west of the islands of Corsica and Sardinia. As they tend to strike the same regions each time, the people living in the western Mediterranean, southern Italy and western Greece, have built structures to deal with these storms and the occasional downpours they bring.

Daniel formed relatively far to the east and struck north-eastern Libya, which is rare. Dozens of people were killed in communities across Cyrenaica, the eastern portion of the country.

In the mountain gorge above the city of Derna, two dams failed in the middle of the night. Thousands of people, most of whom were asleep, are thought to have perished when the wave of water and debris swept down to the coast, destroying a quarter of the city.

A composite image of two aerial photographs of a city taken by satellite.
Derna, a city in eastern Libya, before and after Storm Daniel.
Google Earth/Holly Squire, CC BY

Since medicanes are formed in part by excess heat, events like this are highly sensitive to climate change. A rapid attribution study suggested greenhouse gas emissions made Daniel 50 times more likely.

Despite this, the sixth assessment report from the UN Intergovernmental Panel on Climate Change (IPCC) concluded that medicanes are becoming less frequent but larger. Storm Daniel suggests where medicanes form and make landfall might be more important than their frequency and size.

So does Libya need to brace itself for more of these events in the future than it has in the past, even if they affect the western Mediterranean less often?

Clues from the past

An important clue might lie deep underground, inside caves within north-eastern Libya. Although the caves are often dry today, they contain stalagmites which formed when rain passed through the soil, into the rock and dripped into the cave below thousands of years ago.

These rock formations attest to times in the past when this region was considerably wetter. The caves in Libya – and in Tunisia and Egypt too – form these stalagmites when the global climate is warm.

These bygone warm periods are not quite the same as the warm periods IPCC forecasts suggest modern climate change will usher in. But the way a hot world, a relatively ice-free Europe and North America and a wet northern Africa have regularly coincided in the past is striking. Striking and difficult to understand.

Pointed rocks hanging from a cave ceiling.
Stalagmites formed in the distant past contain clues about the ancient climate.
InFocus.ee/Shutterstock

That’s because the experiments that suggest medicanes will become less frequent as the climate warms belong to a pattern described by IPCC climate assessments, in which wet parts of the world are expected to get wetter and dry parts drier. So it is hard to understand why stalagmites tell us warmer periods in the past involved wetter conditions across the northern margin of the Sahara – one of the driest regions on Earth.

Fortunately, scientists can learn more from the way stalagmites sometimes grow imperfectly, leaving tiny blobs of water trapped between the crystals.

The stalagmite we recovered from Susah Cave on the outskirts of Libya’s Susah city, which was severely damaged in the storm, had quite a lot of water in it from wet periods dating to 70,000 to 30,000 years ago. The oxygen and hydrogen isotopes in this water are suggestive of rain drawn from the Mediterranean. This could indicate more medicanes were hitting the Libyan coast then.

Our finding that more rain was falling above Susah Cave during warm periods suggests we should get more storms hitting eastern Libya as the climate warms. This is not quite what the IPCC forecasts, with their prediction of fewer but larger storms, show.

But storm strength is measured in wind speed, not rainfall. The caves could well be recording an important detail of past storminess which we’re not yet able to forecast.

Are stalagmites warning us that North Africa must prepare for future medicanes shifting further east? Our ongoing research aims to answer that question.

The pattern of ancient desert margins receiving more rain during warm periods despite the “dry gets drier” pattern of global climate models is not unique to northern Africa but found around the world. Over millions of years, globally warm periods almost always correspond with smaller deserts in Africa, Arabia, Asia and Australia.

This “dryland climate paradox” is important to unravel. Understanding the differences between climate models and studies of ancient rain will be key to navigating the future as safely as possible.


Imagine weekly climate newsletter

Don’t have time to read about climate change as much as you’d like?

Get a weekly roundup in your inbox instead. Every Wednesday, The Conversation’s environment editor writes Imagine, a short email that goes a little deeper into just one climate issue. Join the 20,000+ readers who’ve subscribed so far.The Conversation


Mike Rogerson, Senior Lecturer in Earth System Science, Northumbria University, Newcastle; Belkasem Alkaryani, Lecturer in Geology, University of Tobruk, and Mahjoor Lone, Postdoctoral Research Associate in Palaeoclimatology, Northumbria University, Newcastle

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Continue ReadingWas the freak ‘medicane’ storm that devastated Libya a glimpse of North Africa’s future?

Global heating made Greece and Libya floods more likely, study says

Spread the love
Destruction caused by floods in Derna, Libya
Destruction caused by floods in Derna, Libya

https://www.theguardian.com/environment/2023/sep/19/global-heating-made-mediterranean-floods-more-likely-study-says

Report says climate change made rainfall heavier but human factors turned extreme weather into humanitarian disaster

Carbon pollution led to heavier rains and stronger floods in Greece and Libya this month but other human factors were responsible for “turning the extreme weather into a humanitarian disaster”, scientists have said.

Global heating made the levels of rainfall that devastated the Mediterranean in early September up to 50 times more likely in Libya and up to 10 times more likely in Greece, according to a study from World Weather Attribution that used established methods but had not yet been peer-reviewed.

The amount of rain that fell in Libya was “far outside that of previously recorded events”, the WWA report found. Up to 50% more rain fell than it would have in a world where people had not changed the climate, the report found, though the researchers cautioned that the level of uncertainty was high.

The report found the ongoing conflict and political instability in Libya compounded the effects of the flooding. Dams built in the 1970s had been poorly maintained. They may also have been designed based on short rainfall records that underestimated how strong an extreme storm could be.

The report found that people were at greater risk because the dams stored so much water and failed at night, leaving little time to escape.

https://www.theguardian.com/environment/2023/sep/19/global-heating-made-mediterranean-floods-more-likely-study-says

Continue ReadingGlobal heating made Greece and Libya floods more likely, study says

Faster disaster: climate change fuels ‘flash droughts’, intense downpours and storms

Spread the love

Andrew King, The University of Melbourne and Andrew Dowdy, The University of Melbourne

The run of extreme weather events around the world seems to be never-ending. After the northern summer of extreme heat and disastrous fires, we’ve seen more exceptional autumn weather over Europe with record-breaking heat in the UK.

Meanwhile, record-breaking rain and intense flash floods struck Greece before the same storm devastated Libya, with thousands dead.

Almost 20% of Africa is estimated to be in drought, and drought conditions are returning to parts of Australia. To top it off, we’ve seen several hurricanes intensify unusually quickly in the Atlantic.

We know climate change underpins some of the more extreme weather we’re seeing. But is it also pushing these extreme events to happen faster?

The answer? Generally, yes. Here’s how.

Flash droughts

We usually think of droughts as slowly evolving extreme events which take months to form.

But that’s no longer a given. We’ve seen some recent droughts develop unexpectedly quickly, giving rise to the phrase “flash drought”.

How does this happen? It’s when a lack of rainfall in a region combines with high temperatures and sunny conditions with low humidity. When these conditions are in place, it increases how much moisture the atmosphere is trying to pull from the land through evaporation. The end result: faster drying-out of the ground.

Flash droughts tend to be short, so they don’t tend to cause the major water shortages or dry river beds we’ve seen during long droughts in parts of Australia and South Africa, for example. But they can cause real problems for farmers. Farmers in parts of eastern Australia are already grappling with the sudden return of drought after three years of rainy La Niña conditions.

As we continue to warm the planet, we’ll see more flash droughts and more intense ones. That’s because dry conditions will more often coincide with higher temperatures as relative humidity falls across many land regions.

Flash floods and extreme rainfall

Climate change can cause increased rainfall variability. Some parts of the world will get a lot wetter, on average, while others will get drier, increasing the variation in rainfall between different regions. For Australia, most locations are generally expected to have intensified downpours of rain, as well as intensified droughts. So we might be saying more often “it doesn’t rain, it pours!”.

We’re seeing exceptionally extreme rainfall in many recent events. The recent floods that submerged villages in Greece came from a sudden downpour of over 500 millimetres in a single day. Hong Kong was hit last week by the heaviest rains in 140 years, flooding subway stations and turning streets into rivers.

But why does it happen so quickly?

Sudden extreme rains fall when we have very moist air coupled with a weather system that forces air to rise.

We’ve long known human-caused climate change is increasing how much moisture the air can hold generally, rising by about 7% per degree of global warming. That means storms now have the potential to hold and dump more water.

Notably, the impact of climate change on rain-bearing weather systems can vary by region, which makes the picture more complicated. That means, for instance, climate change may lead to more extreme rain in some places, while other places may only see an intensification in really short extreme rain events and not for longer timescales.

We can safely say, though, that in most parts of the world, we’re seeing more intense storms and sudden extreme rainfall. Sudden dumps of rain drive flash floods.

More moisture in the air helps fuel more intense convection, where warm air masses rise and form clouds. In turn, this can trigger efficient, quick and intense dumps of rain from thunderstorms.

These short-duration rain events can be much larger than you’d expect from the 7% increase in moisture per degree of warming.

Flash cyclones? Hurricanes are intensifying faster

Last month, Hurricane Idalia caused major flooding in Florida. As we write, Hurricane Lee is approaching the US.

Both tropical storms had something odd about them – unusually rapid intensification. That is, they got much stronger in a short period of time.

Usually, this process might increase wind speeds by about 50 kilometres per hour over a 24-hour period for a hurricane – also known as tropical cyclones and typhoons. But Lee’s wind speeds increased by 129km/h over that period. US meteorological expert Marshall Shepherd has dubbed the phenomenon “hyperintensification”, which could put major population centres at risk.

Rapidly intensifying tropical cyclones are strong and can be very hazardous, but they aren’t very common. To trigger them, you need a combination of very high sea surface temperatures, moist air and wind speeds that don’t change much with height.

While still uncommon, rapid intensification is potentially getting more frequent as we heat the planet. This is because oceans have taken up so much of the heat and there’s more moisture in the air. There’s much more still to learn here.

Australia’s El Niño summer in a warming world

Spring and summer in Australia are likely to be warmer and drier than usual. This is due to the El Niño climate cycle predicted for the Pacific Ocean. If, as predicted, we also get a positive Indian Ocean Dipole event, this can heighten the hotter, drier weather brought by El Niño. After three wet La Niña years, this is likely to be a marked shift.

If it arrives as expected, El Niño would lower the risk of tropical cyclones for northern Australia and reduce chances of heavy rain across most of the continent.

But for farmers, it may help trigger flash droughts. Prevailing warm and dry conditions may rapidly dry the land and reduce crop yields and slow livestock growth.

Drier surfaces coupled with grass growth from the wet years could worsen fire risk. Grass can dry out much faster than shrubs or trees, and grass fires can start and spread very rapidly.

Climate change loads the dice for extreme weather. And as we’re now seeing, these extremes aren’t just more intense – they can happen remarkably fast. The Conversation

Andrew King, Senior Lecturer in Climate Science, The University of Melbourne and Andrew Dowdy, Principal Research Scientist, The University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Continue ReadingFaster disaster: climate change fuels ‘flash droughts’, intense downpours and storms